Skip to content

03. SVD (Singular Value Decomposition)

'ํ–‰๋ ฌ'์€ ๋‹จ์ˆœํžˆ ์ˆซ์ž๋ฅผ ํ–‰๊ณผ ์—ด๋กœ ๋ณด๊ด€ํ•˜๋Š” ๊ตฌ์กฐ์ด๊ธฐ๋งŒ ํ•˜์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค. ์•ฝ์†์„ ํ†ตํ•ด 'ํ–‰๋ ฌ'์— ๋‹ด์•„๋†“์€ ํŠน์ˆ˜ํ•œ ์—ฐ์‚ฐ์ธ ํ–‰๋ ฌ๊ณฑ ๋•๋ถ„์— ํ–‰๋ ฌ์€ *์ด๊ฒƒ*์œผ๋กœ๋„ ๋ณผ ์ˆ˜ ์žˆ์–ด์š”. *์ด๊ฒƒ*์€ ๋ฌด์—‡์ธ๊ฐ€์š”?

'์„ ํ˜•์„ฑ'(linearity)์„ ์ด๋ฃจ๋Š” ์„ฑ์งˆ์„ ๋ชจ๋‘ ๊ณ ๋ฅด์„ธ์š”(2๊ฐœ). ์ด ์„ฑ์งˆ์ด ์–ด๋–ป๊ฒŒ ๋ถˆ๋ฆฌ๋Š”์ง€๋„ ์•Œ๊ณ  ์žˆ๋‚˜์š”?

์•Œ๊ณ  ์žˆ์–ด์•ผ ํ•˜๋Š” ๊ฐœ๋…

  • ์Šค์นผ๋ผ, ๋ฒกํ„ฐ, ํ–‰๋ ฌ์˜ ๊ตฌ๋ถ„
  • ํ•ญ๋“ฑํ–‰๋ ฌ (Identity Matrix)
  • ์ „์น˜ํ–‰๋ ฌ (Transpose Matrix)
  • ๋Œ€์นญํ–‰๋ ฌ (Symmetric Matrix)

์•Œ๊ฒŒ ๋  ๊ฐœ๋…

  • ๊ณ ์œ ๋ฒกํ„ฐ (Eigenvector)
  • ๊ณ ์œ ๊ฐ’ (Eigenvalue, )
  • ํŠน์ด๊ฐ’ (Singular Value, )
  • ํŠน์ด๊ฐ’ ๋ถ„ํ•ด (Singular Value Decomposition, SVD)